METAL-ORGANIC COMPOUNDS

Acta Cryst. (1996). C52, 765-767

trans-Tetracarbonylbis(tricyclohexylphosphine)molybdenum(0), trans$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{PCy}_{3}\right)_{2}\right]$

Elmer C. Alyea, George Ferguson and Shanmugaperumal Kannan
Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada NIG 2W1. E-mail: george@x-ray.chembio.uoguelph.ca

(Received 20 December 1995; accepted 22 January 1996)

Abstract

The title compound, $\left.\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{P}^{2} \mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right]$, has crystallographic inversion symmetry and principal dimensions Mo-P 2.5436 (9), Mo-C 2.020 (4) and 2.028 (3) \AA. The mean cone angle for the cyclohexylphosphine ligand is 155°, compared with 146° for the cis isomer.

Comment

The title compound, (1), was synthesized as part of our studies of $\left[\mathrm{Mo}(\mathrm{CO})_{(6-n)}\left(\mathrm{PY}_{3}\right)_{n}\right] \quad(n=1-3, Y=$ alkyl, aryl, $\mathrm{O} R, \mathrm{~S} R, \mathrm{~N} R_{2}$, halide) complexes by ${ }^{95} \mathrm{Mo}$ NMR spectroscopy (Alyea \& Song, 1995; Song, 1994). The effect of changes in the P substituent (Y) and the degree of carbonyl substitution have previously been deduced by the X-ray analyses of cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-\right.\right.\right.$ $\left.\left.p_{3}\right\}_{2}\right]$ (Alyea, Ferguson, Gallagher \& Song, 1994), cis$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}_{2}\right]$ (Alyea, Ferguson \& Zwikker, 1994), fac-[$\left.\mathrm{Mo}(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}_{3}\right]$ (Alyea, Ferguson \& Song, 1995) and trans- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{P}\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}\right\}_{2}\right]$ (Alyea, Ferguson \& Song, 1996). A search of the October 1995 release of the Cambridge Structural Database (Allen, Kennard \& Taylor, 1983) revealed relatively few X-ray data on trans- $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{P}_{2}$ fragments. Examples of such mononuclear trans systems having phosphine ligands are trans $-\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{2} \mathrm{~F}\right)\left\{\mathrm{PPh}_{2}\left(\mathrm{NH}_{2}\right)\right\}\right]$ (Bradley, Wong, Gabe \& Lee, 1986), trans- $\left[\mathrm{Mo}(\mathrm{CO})_{4}-\right.$ $\left\{\mathrm{PPh}_{2}\left(\mathrm{NHMe}^{2}\right\}_{2}\right]$ (Gray \& Zhang, 1993), trans-[Mo(CO) $\left.)_{4}\left\{\mathrm{Ph}_{2} \mathrm{P}^{-\mathrm{CH}_{2}}-\left(\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{2}-\mathrm{PPh}_{2}\right\}\right]$ (Gray \& Duffey, 1994). Relevant dinuclear trans systems with bridging bidentate phosphine ligands are trans$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}\right\}_{2} \mathrm{Mo}(\mathrm{CO})_{4}\right] \quad(n=5$: Ueng \& Hwang, 1994; $n=6$: Ueng \& Hwang, 1991). Although the structure of cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{PCy}_{3}\right)_{2}\right]$, (2), was reported recently (Watson, Woodward, Conole, Kessler \& Sykara, 1994), there has been no report on the structure of the corresponding trans isomer, for which synthetic and spectroscopic data are known (Alyea \& Som-

Fig. 1. A view of (1) with our numbering scheme; only one of the two orientations of the disordered cyclohexane ring (C31A-C36A/C31B-C36B) is shown. Displacement ellipsoids are drawn at the 30% probability level. Atoms Pla, Cla, C2a, Ola and O2a are at equivalent positions $-x,-y,-z$.

The Mo-P bond distance in (1) [2.5436(9) \AA] is much shorter than the average Mo-P bond distance in cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{PCy}_{3}\right)_{2}\right]$, (2) $[2.654$ (4) \AA], and longer than in any of the related trans$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{PY}_{3}\right)_{2}\right]$ compounds cited above, e.g. trans$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{P}\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}\right\}_{2}\right]$, (3) $[2.4699$ (7) \AA A, trans$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{2} \mathrm{~F}\right)\left\{\mathrm{PPh}_{2}\left(\mathrm{NH}_{2}\right)\right\}\right]$, (4) [2.414(1), 2.471 (1) A], $\operatorname{trans}-\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{PPh}_{2}\left(\mathrm{NHMe}^{2}\right)\right\}_{2}\right]$, (5) [2.4585 (7) \AA], trans- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{PPh}_{2}\right\}_{2}-\right.$ $\left.\mathrm{Mo}(\mathrm{CO})_{4}\right]$, (6) [2.478(2) and 2.488 (2) \AA], trans$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{PPh}_{2}\right\}_{2} \mathrm{Mo}(\mathrm{CO})_{4}\right]$, (7) $[2.468$ (2) and $2.470(2) \AA$ A , and trans $-\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{Ph}_{2} \mathrm{P}-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{O}-\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{2}-\mathrm{PPh}_{2}\right)\right]$, (8) [2.472 (1) and 2.484 (1) \AA]. The elongated Mo-P bond distance in (1) can be attributed to the steric hindrance caused by the bulkier cyclohexyl group of the PCy_{3} ligand.

The $\mathrm{P}-\mathrm{Mo}-\mathrm{P}$ angles in (1), (3) and (5) are required to be exactly 180° by crystallographic symmetry constraints, as compared with 173.1 (1) in (4), 177.38 (8) in (6), 173.26 (7) in (7) and 175.69 (4) ${ }^{\circ}$ in (8), where the molecules lie in general positions in their unit cells. The slight non-linearity of the Mo- $\mathrm{C}-\mathrm{O}$ angles in (1) [176.9(3), $177.7(3)^{\circ}$] presumably accommodates the bulk of the PCy_{3} ligands; similar small deviations were also found in (3) (Alyea, Ferguson \& Song, 1996). The other angles around the Mo atom show small deviations from the values for idealized octahedral geometry [C1—Mo-C2 $92.17(13)^{\circ}$, P1-Mo-C2 $87.07(9)^{\circ}$]. Distortion of the tetrahedral geometry at the P atom is shown by the disparity of the enlarged Mo-P-C and the reduced $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles (Table 2). In the case of cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles are in the range 98.8 (7)-107.1 (7) ${ }^{\circ}$. In non-coordinated PCy_{3} (Davies, Dutremez \& Pinkerton, 1991), the C-P-C angles are 103.1 (3), 103.2 (3) and 105.1 (3) ${ }^{\circ}$. The other dimensions in (1) are normal and have been deposited as Supplementary Material.

A better comparison of the steric effect of the change in geometry from the cis to the trans forms was afforded by calculating the cone angles for each isomer from the available crystallographic data. By calculating semicone angles ($\theta / 2$) using the 'ligand-profile' concept (Ferguson, Roberts, Alyea \& Khan, 1978), with C-

Fig. 2. (a) A view showing the 'planar' cyclohexyl ring before disorder was allowed for. (b) A view showing the two disordered cyclohexyl ring components after refinement. Displacement ellipsoids are drawn at the 30% probability level.

H at $1.08 \AA$, resultant average cone angles (θ) of 146 (cis) and 155° (trans) were obtained. The latter value is in good agreement with the value ($\theta=156^{\circ}$) calculated for the bulky phosphite ligand $\mathrm{P}\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}$ in (3) (Alyea, Ferguson \& Song, 1996). These calculated cone angles are significantly smaller than predicted by Tolman (1977) from simple estimates with CPK models [170 for $\mathrm{PCy}_{3}, 172^{\circ}$ for $\mathrm{P}\left(\mathrm{O}^{\prime} \mathrm{Bu}\right)_{3}$]. The flexibility of PCy_{3} to adjust to its environment can be attributed to the ability of the cyclohexyl rings to intermesh to relieve steric strain.

Experimental

The title compound was synthesized by the reaction of $\mathrm{Mo}(\mathrm{CO})_{6}$ with PCy_{3} ($1: 2$ ratio) in refluxing iso-octane for 24 h . The product was recrystallized from dichloromethaneheptane at 278 K . Relevant spectroscopic data are: $\nu(\mathrm{CO})=$ $1870 \mathrm{~cm}^{-1}, \delta\left({ }^{95} \mathrm{Mo}\right)=-1765$ p.p.m.. $J(\mathrm{Mo}-\mathrm{P})=134 \mathrm{~Hz}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (Alyea \& Somogyvari, 1988).

Crystal data

$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{P}\right)_{2}\right]$
$M_{r}=768.81$
Triclinic
$P \overline{1}$
$a=9.9005(8) \AA$
$b=10.5082(12) \AA$
$c=11.314(2) \AA$
$\alpha=62.779(14)^{\circ}$
$\beta=72.583(11)^{\circ}$
$\gamma=88.966(8){ }^{\circ}$
$V=988.9(2) \AA^{3}$
$Z=1$
$D_{x}=1.291 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: numerical by integration from crystal shape
$T_{\text {min }}=0.8899, T_{\text {max }}=$ 0.9586

4295 measured reflections 4295 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0411$
$\omega \cdot R\left(F^{2}\right)=0.0925$
$S=0.962$
4295 reflections
269 parameters
H atoms riding [SHELXL93
(Sheldrick, 1993) defaults, C-H 0.97-0.98 A]

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=11.48-18.08^{\circ}$
$\mu=0.450 \mathrm{~mm}^{-1}$
$T=294$ (1) K
Plate
$0.32 \times 0.25 \times 0.10 \mathrm{~mm}$
Colorless

2850 observed reflections

$$
\begin{gathered}
{[I>2 \sigma(I)]} \\
\theta_{\max }=26.86^{\circ} \\
h=-12 \rightarrow 12 \\
k=0 \rightarrow 13 \\
l=-12 \rightarrow 14
\end{gathered}
$$

3 standard reflections frequency: 120 min intensity variation: 1%

$$
\begin{aligned}
& w^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0407 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.013 \\
& \Delta \rho_{\max }=0.441 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.545 \mathrm{e}^{-3} \\
& \text { Extinction correction: none } \\
& \text { Atomic scattering factors } \\
& \text { from International Tables } \\
& \text { for Crystallography (1992, } \\
& \text { Vol. C, Tables 4.2.6.8 and } \\
& \text { 6.1.1.4) }
\end{aligned}
$$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Mol	0	0	0	$0.03006(13$
P1	-0.21010 (8)	-0.17667 (8)	0.20526 (8)	0.0332 (2)
Ol	0.2143 (3)	-0.2144 (3)	0.1126 (3)	0.0802 (9)
O2	0.0008 (3)	0.1480 (3)	0.1888 (3)	0.0754 (9)
C1	0.1363 (4)	-0.1357 (4)	0.0748 (3)	0.0459 (8)
C2	0.0036 (4)	(0.0957 (3)	0.1195 (3)	0.0441 (8)
$\mathrm{Cl1}$	-0.2680 (3)	-0.3371 (3)	0.1931 (3)	0.0426 (8)
C 12	-0.1493 (4)	-0.4323 (4)	0.1887 (4)	0.0567 (10)
Cl 3	-0.1976 (5)	-0.5638(4)	0.1800 (5)	0.0819 (14)
C14	-0.2464 (5)	-0.5191 (5)	0.0544 (5)	0.087 (2)
C 15	-0.3661 (5)	-0.4296 (5)	0.0597 (5)	0.0803 (14)
C16	-0.3261 (4)	-0.2973 (4)	0.0718 (4)	0.0564 (10)
C21	-0.3794 (3)	-0.0952 (3)	0.2291 (4)	0.0421 (8)
C22	-0.3714 (4)	0.0263 (4)	0.2648 (5)	0.0644 (11)
C23	-0.4991 (4)	0.1096 (5)	0.2524 (6)	0.089 (2)
C24	-0.6.390 (4)	0.0126 (5)	0.3396 (6)	0.090 (2)
C25	-0.6466 (4)	-0.1096 (5)	0.3070 (6)	0.0827 (14)
C26	-0.5203 (4)	-0.1942 (4)	0.3239 (4)	0.0640 (11)
C31A \dagger	-0.1773 (7)	-0.2757 (6)	0.3775 (4)	0.046 (3)
C32A	-0.1071 (7)	-0.1825 (5)	0.4196 (5)	0.057 (2)
C33A	-0.0585 (7)	-0.2734 (8)	0.5455 (6)	0.073 (5)
C34A	-0.1805 (8)	-0.3840 (7)	0.6694 (4)	0.064 (3)
C35A	-0.2483 (7)	-0.4783 (5)	0.6268 (5)	0.062 (2)
C36A	-0.2986 (6)	-0.3865 (7)	0.5023 (6)	0.047 (7)
C31B	-0.1949 (8)	-0.2485 (10)	0.3849 (3)	0.047 (4)
C32B	-0.0439 (7)	-0.2509 (8)	0.3927 (6)	0.050 (3)
C33B	-0.0422 (10)	-0.2838(10)	0.5381 (8)	0.066 (7)
C34B	-0.1379 (9)	-0.4248 (9)	0.6515 (6)	0.066 (4)
C35B	-0.2900 (8)	-0.4199 (10)	0.6465 (6)	0.075 (4)
C36B	-0.2931 (9)	-0.3867 (11)	0.5014 (8)	0.068 (13)

\dagger Disordered cyclohexane ring C31A-C36A/C31B-C36B (see below).
Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Mol}-\mathrm{Cl}$	$2.020(4)$	$\mathrm{Pl}-\mathrm{C} 31 A$	1.870
$\mathrm{Mol}-\mathrm{C} 2$	$2.028(3)$	$\mathrm{Pl}-\mathrm{C} 31 B$	1.870
$\mathrm{Mol}-\mathrm{Pl}$	$2.5436(9)$	$\mathrm{Ol}-\mathrm{Cl}$	$1.147(4)$
$\mathrm{Pl}-\mathrm{Cll}$	$1.866(3)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.141(4)$
$\mathrm{Pl}-\mathrm{C} 21$	$1.872(3)$		
$\mathrm{Pl}-\mathrm{Mol}-\mathrm{Cl}$	$90.10(9)$	$\mathrm{C} 21-\mathrm{Pl}-\mathrm{C} 31 B$	$100.4(3)$
$\mathrm{Pl}-\mathrm{Mol}-\mathrm{C} 2$	$87.07(9)$	$\mathrm{Mol}-\mathrm{Pl}-\mathrm{Cl1}$	$116.25(10)$
$\mathrm{Cl}-\mathrm{Mol}-\mathrm{C} 2$	$92.17(13)$	$\mathrm{Mol}-\mathrm{Pl}-\mathrm{C} 21$	$113.45(11)$
$\mathrm{Cll-P1-C21}$	$101.82(14)$	$\mathrm{Mol}-\mathrm{P} 1-\mathrm{C} 31 A$	$115.7(2)$
$\mathrm{Cll-Pl-C31A}$	$97.9(3)$	$\mathrm{Mol}-\mathrm{Pl}-\mathrm{C} 31 B$	$116.8(3)$
$\mathrm{Cll-Pl-C31B}$	$106.0(3)$	$\mathrm{Mol}-\mathrm{Cl}-\mathrm{O} 1$	$176.9(3)$
$\mathrm{C} 21-\mathrm{Pl}-\mathrm{C} 31 \mathrm{~A}$	$109.9(3)$	$\mathrm{Mol}-\mathrm{C} 2-\mathrm{O} 2$	$177.7(3)$

Molecule (I) crystallized in the triclinic system; space group $P \overline{1}$ was assumed and confirmed by the analysis. One of the cyclohexane rings is disordered over two orientations; this disorder was allowed for by appropriate constraints ($\mathrm{C}-\mathrm{C}$ $1.524 \AA, \mathrm{P}-\mathrm{C} 1.870 \AA$, chair conformation) during the final refinement cycles and led to occupancies of 0.598 (7) and 0.402 (7) for the two conformers. During the initial solution and refinement process, the disordered cyclohexyl ring appeared as a planar ring with abnormal displacement parameters normal to the ring plane (Fig. 2a). A view of the two conformers of the disordered ring at the end of the refinement is presented in Fig. 2(b). The possibility that the true space group was $P 1$ with ordered cyclohexanes as opposed to $P \overline{1}$ with disordered ones was considered and rejected on the following grounds: (a) attempted refinement of the structure in the space group $P 1$ became quite unstable and (b) this situation of 'centrosymmetric or non-centrosymmetric?' has already been the subject of discussion with the conclusion that 'it is better to opt for a centrosymmetric description, even
though disorder may result' (Marsh, 1986). Examination of the structures with PLATON (Spek, 1994a) showed that there were no solvent accessible voids in the crystal lattice.

Data collection: CAD-4 Software (Enraf-Nonius, 1992). Cell refinement: SET4 and CELDIM (Enraf-Nonius, 1992). Data reduction: DATRD2 in NRCVAX94 (Gabe, Le Page, Charland, Lee \& White, 1989). Program(s) used to solve structure: NRCVAX 94 (Patterson heavy-atom method). Program(s) used to refine structure: NRCVAX94; SHELXL93 (Sheldrick, 1993). Molecular graphics: NRCVAX94; ORTEPII (Johnson, 1976) in PLATON (Spek, 1994a); PLUTON (Spek 1994b). Software used to prepare material for publication: NRCVAX94; SHELXL93.

ECA and GF thank NSERC (Canada) for research grants.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1347). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Allen, F. H., Kennard, O. \& Taylor, R. (1983). Acc. Chem. Res. 16. 146-153.
Alyea, E. C., Ferguson, G., Gallagher, J. \& Song, S. Q. (1994). Acta Cryst. C50, 1084-1087.
Alyea, E. C., Ferguson, G. \& Song, S. Q. (1995). Acta Cryst. C51, 2238-2242.
Alyea, E. C.. Ferguson, G. \& Song, S. Q. (1996). Acta Cryst. C52, 66-69.
Alyea, E. C., Ferguson, G. \& Zwikker, M. (1994). Acta Cryst. C50, 676-678.
Alyea, E. C. \& Somogyvari, A. (1988). Can. J. Chem. 66, 397-400.
Alyea, E. C. \& Song, S. Q. (1995). Inorg. Chem. 34, 3864-3873.
Bradley, F. C., Wong, E. H., Gabe, E. J. \& Lee, F. L. (1986). Inorg. Chim. Acta, 120, L21-L22.
Davies, J. A., Dutremez, S. \& Pinkerton, A. A. (1991). Inorg. Chem. 30. 2380-2387.

Enraf-Nonius (1992). CAD-4/PC Sofixare. Version 1.1. EnrafNonius, Delft, The Netherlands
Ferguson, G., Roberts, P. J., Alyea, E. C. \& Khan, M. A. (1978). Inorg. Chem. 17, 2965-2967.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Gray, G. M. \& Duffey, C. H. (1994). Organometallics, 13, 1542-1544.
Gray, G. M. \& Zhang, Y. (1993). J. Crystallogr. Spectrosc. Res. 23, 711-717.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Marsh, R. E. (1986). Acla Crysl. B42, 193-198.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Song, S. Q. (1994). PhD thesis, University of Guelph, Canada.
Spek, A. L. (1994a). PLATON. Molecular Geometry Program. July 1994 version. University of Utrecht, The Netherlands.
Spek, A. L. (1994b). PLUTON. Molecular Graphics Program. July 1994 version. University of Utrecht, The Netherlands.
Tolman, C. A. (1977). Chem. Rev. 77, 313-348.
Ueng. C. H. \& Hwang, G. Y. (1991). J. Chem. Soc. Dation Trans. pp. 1643-1645.
Ueng, C. H. \& Hwang, G. Y. (1994). Acta Cryst. C50, 1866-1868.
Watson, M., Woodward, S., Conole, G., Kessler, M. \& Sykara, G. (1994). Polyhedron, 13, 2455-2458.

